继电器控制灯光电路图(一)
电灯遥控开关电路由发射和接收两部分组成,如图所示。图(a)为发射部分,它是一个发射机。晶体管VT1、VT2为-个自激多谐振荡器,其集电极负载不是电阻,而是电感线圈。当台上电源开关SB后,振荡电路工作,两管轮流导通与截止,电流断续通过线圈,经L1、L2互感,便有高频振荡信号直接从发射天线WD1辐射到空间。发射的工作波段,可通过选取电容C2、C3及电阻R1、R2的大小确定。调节电容c1,可改变振荡频率。
图(b)为接收部分,接收天线WD2收到空间电磁波后,通过谐振回路选出从发射的高频振荡信号,由于这一信号较强,加到晶体管VT3的基极使得VT3饱和导通,经三极管检波、VT3、VT4组成的复合管放大后,就有较大的电流通过晶体管、VT4的集电极,于是串接在VT4集电极上的继电器KA吸合。当继电器KA动作时,带动执行机构,控制了电灯的开和关。使用时,按一下发射机的按钮SB.固定在电灯开关上的接收机就工作,继电器衔铁吸合,带动棘轮转过一齿,电灯就由亮变灭或由灭变亮。
继电器控制灯光电路图(二)
继电器光控开关电路如下图,主要特点是白天有光照,灯泡不亮,夜晚黯淡无光,电路自动通电,灯泡亮起。
白天在较强光照下,光导管A(一种光敏电阻)两端阻值很小,约20~50kΩ,晶体管VT2获得基极电流而导通,VT1从R2上得到正偏电压也导通,继电器线圈KA得电,继电器的常闭触电②、③断开,两只晶闸管V1和V2没有触发信号而不导通,因而灯泡EL不亮。
夜幕降临时,随着光照强度下降,光导管A的阻值不断增加,最终可达1MΩ左右,VT1因基极电流太小而截止,VT1也相应截止,继电器KA失电释放,常闭触电②、③闭合,晶闸管V1、V2因其两控制相连而处于双向导通状态,电源被接通,照明灯亮。
图中,电容器C3用于防止夜间瞬时强光干扰引起照明灯熄灭。而当光亮强度在临界点附件缓慢变化时,易引起继电器颤动而使灯光闪动,C2可以过滤掉脉冲电流,避免照明灯闪亮。
继电器控制灯光电路图(三)
传统室内灯光控制为墙壁开关的简单控制模式,完全由人操控,因为进入室内人员的节能意识不足,随意将所有灯打开,造成能源的浪费。本装置经过智能处理器分析处理再决定灯开关电源最终打开与否,有效地避免了实际教室内部的通电即亮的情况的发生。本设计主要是完成室内灯光的自动调节功能。由光敏电阻进行光线强度的采集,并由光敏电阻的特性得到相应的模拟信号量,交由MSC51单片机,MSC51单片机在接收到信号之后做出相应的处理,给出控制信号,控制继电器的接通与否,从而实现灯光的智能控制。此设计在保证有效照明强度的调解下,合理的控制灯管的数量,从而实现了节能的目的。
解决室内公共照明的电能浪费问题。由光敏电阻采集光强信号,经转换得到数字信号交单片机分析判断处理,再由继电器控制灯光照明电路,最终决定灯光电源开与否,从而节约电能。创新方面,光敏电阻对室内光线感光结合单片机综合控制,改变传统的控制模式,合理控制照明灯的数量。关键点在于信号的采集及MCS-51逻辑判定部分。
本装置由智能处理器进行分析给出控制信号,有别于传统灯光控制模式。传统室内灯光控制为墙壁开关的简单控制模式,完全由人操控,因为进入室内人员的节能意识不足,随意将所有灯打开,造成能源的浪费。此外利用光敏电阻进行实时的光强信号的采集,得出实时的光照强度。装置的使用者仅仅需要按照平时的习惯接通电源即可,最终能否打开灯的电源,还得依赖于智能处理器给出的控制信号,整个过程由智能控制器自动完成。
最大的三个优势1、节能2、造价低廉3、自动完成灯线强度的调节
本装置适用于类似于学校教室的室内照明环境。目前教室的灯光控制完全由人的意念决定,导致电能的严重浪费。由于此设备造价低廉,线路连接和改造简单,易推广应用,经济效益可观。
继电器控制灯光电路图(四)
控制器的工作过程
根据需要设置好微电脑时控开关每日供电的开启时间和关闭时间。到开启时间时。微电脑时控开关接通电源,在此时间内照明灯的亮与不亮还取决于光照亮度情况。白天光照亮度强。光控开关内的光敏电阻cds受到光线的照射,电阻值变小,晶体管T1和T2截止,继电器J线圈失电触点断开。
交流接触CJ线圈失电不吸合。主触点切断照明供电。当阴天光照亮度弱及晚上时,由于光敏电阻cds受到的光照弱和无光照因而电阻值增大,晶体管T1和T2饱和导通,继电器J得电吸合,通过交流接触器CJ接通照明电源。到了关闭时,间时微电脑时控开关将切断光控开关的电源。光控开关失电后,交流接触器CJ线圈也将失电脱开,主触点切断照明电源。从而达到了智能控制照明之目的。
控制器电路设计
微电脑时控开关采用KGT型,光控开关为自制。光敏电阻cds是从旧的声控延时开关上拆下的。继电器为JQX-4型,线圈额定电压为12V,为提高可靠性将两组触点并联。红LED作为光控开关的接通指示。与交流接触器CJ的线圈并联。
只要所用元件为正品,焊接无误,即可成功。调试时,先不接交流接触器CJ,用手遮挡光敏电阻上的光线,J吸合,LED亮;手拿开时,J断开,LED灭。调整电阻R的阻值可调节光控的灵敏度。CJ为20A的交流接触器。线圈电压为V,型号为CDC10-20。
整个光控开关装在自制的木盒内。微电脑时控开关安装在木盒上面,在木盒的侧面开两个Φ5mm小孔用于安装LED和光敏电阻。木盒放在。配电房窗户边,IED和光敏电阻的面朝窗口。交流接触器安装在配电柜内照明控制空气开关旁,整个控制器即安装完毕。使用时,按KGT微电脑时控开关的说明设定好每日照明供电的开启时间和关闭时间后,就可投入使用了。
继电器控制灯光电路图(五)
无线发射系统电路:主要采用PT芯片来完成,电路PT对按键信号进行编码,可以控制4个通道。图2中,PT的1~8脚是编码地址端,每个地址端可以设定“高电平”(该脚接12V)、“低电平”(该脚接地)、“悬空”三种状态。10~13脚是编码的数据输入端D3~D0(使用4位数据),在每个数据端连接了一个按键,用以控制不同的设备。
当按下按键后,按键将12V的电压加到对应的数据端,同时数据端信息通过晶振将信号并发射出去。PT将会根据地址码的设定和输入的数据进行编码,从17脚输出编码脉冲。无线通信受编码脉冲控制,当17脚脉冲为“l”时,V1组成的振荡器工作,产生MHz的高频信号并发射出去;当17脚输出脉冲为“0”时,Vl组成的振荡器停止工作。
无线接收系统电路:接收系统电路主要由接收模块(包括射频模块、芯片PT2及外围电路)、继电器电路和负载电路组成,如图3所示。PT2的1~8脚是解码地址端,每个地址端可以设定“高电平”(该脚接5V)、“低电平”(该脚接地)、“悬空”三种状态,该解码地址的设定与PT2的地址编码相对应。当射频模块接收到由发射电路发出的信号后,PT2进行地址码比较核对(解码),若地址码核对正确,则发射模块TE脚(编码启动端用于多数据的编码发射,低电平有效)发出的信号经接射频模块由Din脚(14引脚)进入PT2,同时数据经PT2的数据输出脚D0~D3(10~13脚)进入单片机;反之PT2的数据输出脚则无任何动作。当信号进入单片机后,单片机对其进行分析并作出相应的控制。
如果接收到的第一路信号为高电平,单片机控制的数码显示管会显示“11”(第一个“1”表示第一路信号,第二个“1”表示该信号为高电平),同时单片机向继电器电路发出高电平,继电器吸合,负载电路工作;当第二次接收到高电平,通过单片机将对应的端口电平置零;当第三次接收到高电平时再次置1,如此循环;当数码管的显示为“11”时(第一个1表示第一路信号,第二1表示该信号为低电平),此时单片机向继电器电路发出低电平,继电器断开,负载停止工作。利用继电器和数码管可以实现灵活控制并清晰地显示。
{以上内容仅供参考,部分资料来源于网络,上海上继科技有限公司有最终解释权}
更多电力仪表精彩文章——掌握灯丝继电器工作原理